Neural tube closure: cellular, molecular and biomechanical mechanisms.
نویسندگان
چکیده
Neural tube closure has been studied for many decades, across a range of vertebrates, as a paradigm of embryonic morphogenesis. Neurulation is of particular interest in view of the severe congenital malformations - 'neural tube defects' - that result when closure fails. The process of neural tube closure is complex and involves cellular events such as convergent extension, apical constriction and interkinetic nuclear migration, as well as precise molecular control via the non-canonical Wnt/planar cell polarity pathway, Shh/BMP signalling, and the transcription factors Grhl2/3, Pax3, Cdx2 and Zic2. More recently, biomechanical inputs into neural tube morphogenesis have also been identified. Here, we review these cellular, molecular and biomechanical mechanisms involved in neural tube closure, based on studies of various vertebrate species, focusing on the most recent advances in the field.
منابع مشابه
Folate receptor 1 is necessary for neural plate cell apical constriction during Xenopus neural tube formation.
Folate supplementation prevents up to 70% of neural tube defects (NTDs), which result from a failure of neural tube closure during embryogenesis. The elucidation of the mechanisms underlying folate action has been challenging. This study introduces Xenopus laevis as a model to determine the cellular and molecular mechanisms involved in folate action during neural tube formation. We show that kn...
متن کاملValproic acid disrupts the biomechanics of late spinal neural tube closure in mouse embryos
Failure of neural tube closure in the early embryo causes neural tube defects including spina bifida. Spina bifida lesions predominate in the distal spine, particularly after exposure to the anticonvulsant valproic acid (VPA). How VPA specifically disturbs late stages of neural tube closure is unclear, as neurulation is usually viewed as a uniform 'zippering' process along the spine. We recentl...
متن کاملDevelopment of the vertebrate central nervous system: formation of the neural tube.
The developmental process of neurulation involves a series of coordinated morphological events, which result in conversion of the flat neural plate into the neural tube, the primordium of the entire central nervous system (CNS). Failure of neurulation results in neural tube defects (NTDs), severe abnormalities of the CNS, which are among the commonest of congenital malformations in humans. In o...
متن کاملCell movements of the deep layer of non-neural ectoderm underlie complete neural tube closure in Xenopus.
In developing vertebrates, the neural tube forms from a sheet of neural ectoderm by complex cell movements and morphogenesis. Convergent extension movements and the apical constriction along with apical-basal elongation of cells in the neural ectoderm are thought to be essential for the neural tube closure (NTC) process. In addition, it is known that non-neural ectoderm also plays a crucial rol...
متن کاملLoss of Gcn5 acetyltransferase activity leads to neural tube closure defects and exencephaly in mouse embryos.
Gcn5 was the first transcription-related histone acetyltransferase (HAT) to be identified. However, the functions of this enzyme in mammalian cells remain poorly defined. Deletion of Gcn5 in mice leads to early embryonic lethality with increased apoptosis in mesodermal lineages. Here we show that deletion of p53 allows Gcn5(-/-) embryos to survive longer, but Gcn5(-/-) p53(-/-) embryos still di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 144 4 شماره
صفحات -
تاریخ انتشار 2017